JSON-RPC server & client

Contents
T T OQUCTION. ..t eeeeeeeeeeee e e et ettt eeeeeeeeeeeeteee e eeeeseeeaesaennnaaeseesesseesnnnnaaesssesssennnnnaseseesseennnnnassssesssnnnnnnnnssennnnsennen 1
T B 1) SO OO PO PRSP SO P U P PPPPRRRRPPPPPRRRRNt 1
JSON-RPC SEIVET £OT PHP.....oeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et eeeeeeeeeeeeeeesesesesesesssasesesssasesesesesssesesesesssessesssans 3
Methods and hoW t0 @A theIm......ccuvueeeeeeeieeeetiteeeee ettt ettt ettt reeeeseeetteeassneessesesesssssnssesannssessnnsenes 4
How the server locates Method definitionNS. e eeeeeeeeeeeeeeeeeeeeeeteeeeeeeeeeeerteennaeeseseserenaesesenassssenesssennes 4
How to write @ MethOQ/TUNCHON.cooeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 5
JSON-RPC Client fOr JAVASCIIPL. ...ccueerieeiierieiiiiesieeritestestteste et esitessaeesteeseesssesseesstessseesasessaesaseessnnees 6
JSON-RPC CHENE £OT PHP....ceeeeeeeeeeee e e e e e e e e e eeeeeeeeaeaeeeaeaeaeaaaaaeaaaaaaaaaaaaaasssestennaesseeeeannaaaaaes 7
Introduction

This document describes

e a PHP based JSON-RPC server class

© How to call it

o How to add new methods

© How to add new services
e a PHP based JSON-RPC client class and a
* Javascript AJAX JSON-RPC library

The PHP server class responds to messages formatted using the JSSON-RPCv2.0 specification. It
supports the single request, batch request and notification modes of the specification. It is tested with
PHP v7. It uses a pluggable framework for adding methods so that the methods served are independent
of the server code itself.

The PHP client class uses CURL to format and send a request to the server and to retrieve the response,
so your server needs to have the PHP CURL module included. It operates synchronously. It is tested
with PHP v7

The Javascript AJAX library sends requests asynchronously using AJAX and processes the response
with a callback function. It is written for ECMAScript 6 and tested with Chromium v64

The JSON-RPC v2.0 specification can be found at http://www.jsonrpc.org/specification#overview

Set up

Copy all the files and directories into a directory that is accessible to the server. The files are as

follows:

examples/exampleViaAJAX.html

An example script which shows the
Javascript AJAX client at work and
how to use it

examples/exampleViaPHP.php

An example script which shows the
jsonrpcClient class at work and how to
use it

index.php

This file contains the HTTP Transport
wrapper for the jsonrpcServer class

examples/jsonrpcClient.class.php

Use this class when you want to fire
off JSON-RPC requests from a server
side (PHP) script.

examples/jsonrpcClient.js

Use this library when you want to fire
off JSON-RPC requests from an
HTML page running in a modern
browser.

jsonrpcServer.class.php

This class implements the server
processes. It is invoked by index.php
for HTTP transported requests, but
could be used for requests arriving via
other methods (e.g. email)

methods/test/test.php

methods/

services/

This file implements a method (“test”)
which is used in the example scripts. It
simply reflects back the parameters
that are sent to it. It is an example of a
pluggable service module.

This directory contains a sub-directory
for each declared method

This directory contains a sub-directory
for each declared service. Services
follow the same standard as methods
but cannot be invoked directly by a
client.

services/dbconnect.php

docs/

MaintenanceMode

methods/<various directories>

A service to provide connection to a
database. The database handle is
cached for subsequent calls.

Documentation for RPC-JSON server

This file is empty. Its presence signals
the server to operate in maintenace
mode. In this mode it is more verbose
and allows operations that would
otherwise not be allowed. Method
directories may have their own
MaintenanceMode file

There may be additional method
directories implementing further
methods. These are documented
separately.

JSON-RPC Server for PHP

The code for the server class is in the file ‘jsonrpcServer.class.php’. The file ‘index.php’ is an example
of how to invoke the server to provide for requests sent by HTTP.

In addition there is an example service module ‘test.php’ which implements the method ‘test’.

Although the server can be addressed directly it is more likely to be called by using one of the client
service modules that are described on the following pages.

This section describes the use of the server via HTTP POST.

Typically, the server will be used either from PHP scripts running on other servers or AJAX requests
from browser clients. In either case, the request should be formatted as an HTTP POST request with the
payload held in a ‘data’ variable. (Assuming you are using the supplied ‘index.php’ file)

The PHP and Javascript clients which can handle the request process for you, are described later in this
document.

A typical request would look like this:

{"jsonrpc": "2.0", "id": 1, "method": "test", "params": {"p1i": "one", "p2": "two"}}

which would result in the response:

{"jSOﬂFpC": "2.0", "id": 1, "result": {"pl": "one", "pZ": "tWO"}}

(“test” just reflects back the parameters you send it)

or, if there was an error in the request, e.g an unknown method, an error response would be returned:

{"jsonrpc": "2.0", "id": 1, "error": {"code": -31001, "message": "File wrong.php not found",
lldatall: nn }}

You can also send a batch of requests together by wrapping them in an array :

[{"jsonrpc":"2.0", "id":1, "method":"test", "params":{"p1": "one", "p2": "two"}},
{"jsonrpc":"2.0", "id":2, "method":"test", "params":{"p3": "three", "p4": "four"}}]

and the response would be returned similarly in an array:
[{"JSOHrpC": |12.0|l, llidll: 1, Hresultll: {llplll: "One", |lp2ll: Htwoll}}, {"JSOﬂrpC": "2.@", |lidll:
2, "result": {"p3": "thFGE", "p4": "fOUF"}}]

Errors are handled request by request:

[{"jSOﬂrpC":"z.@", "id":j., IImethOdll:llwrongll’ IIparamSll:{llplll: "One", Ilpzll: "tWO"}},
{"jsonrpc":"2.0", "id":2, "method":"test", "params":{"p3": "three", "p4": "four"}}]
yields:

[{"jsonrpc": "2.0","id": 1, "error": {"code": -31001, "message": "File wrong.php not
found", "data": "" } }, {"jsonrpc": "2.0", "id": 2, "result": {"p3": "three", "p4": "four"}}]

However, if the error is in the JSON formatting (in this case the closing square bracket is missing):

[{"jsonrpc":"2.0", "id":1, "method":"test", "params":{"p1i": "one", "p2": "two"}},
{"jsonrpc":"2.0", "id":2, "method":"test", "params":{"p3": "three", "p4": "four"}}

You would not receive an array, even if your data contained an array (with faulty formatting the server
would not know). Instead you would receive a single object like this:

{"jsonrpc": "2.0","id": null,"error": { "code": -32600, "message": "Not a JSON-RPC v2.0
request","data": "" }}

Methods and how to add them

The server is designed to invoke methods that are stored in (PHP) files separate to itself. In order to
write a successful method, you need to understand how the server looks for the methods it has been
asked to invoke.

How the server locates method definitions

All method definitions are held in a ‘methods’ sub-directory of the server (i.e. the directory where
index.php is stored)

Each method has its own sub-directory. The name of the sub-directory must be the same as the name of
the method.

Within the sub-directory there must be a file [methodname].php where [methodname] is the name of
the method.

How to write a method/function

The file [methodname].php (and any other scripts in the directory) MUST declare a namespace which
is the same as the method name or a sub-namespace of it.

The file MUST at least contain a function whose name is the same as the method. This function will be
invoked by the server when it receives a client request specifying that method name.

The [methodname] function will be passed the content of the ‘params’ property of the jsonrpc request
in the form of a PHP object.

The function must return a PHP object. This will form the content of the ‘result’ property of the
message sent back to the server by the client.

Any errors should be thrown using throw new Exception(‘message’, $code), where $code must be an
integer

The ‘test’ method that is supplied as an example is fully documented. You will find it in
methods/test/test.php function test($params) {..}

The ‘test’ method simply responds with a result containing the ‘params’ that were sent to it;
Here is another example:

File ‘methods/myFunc/myFunc.php’:
namespace myFunc;

function myFunc($params) {

if ($params->question =="is this my 1life?”) { //this would yield true
$result = ‘yes it is.’;
} else {

$result = ‘what do you mean?’;

}

return (object) [“answer”=>$result];

(note you must return the result as an object, not an array) and called it with :
{"jsonrpc":"2.0", "id":1, "method":"myFunc", "params":{"question":"is this my life?"}
You would get the response:

{"jsonrpc": "2.0", "id": 2, "result": {"answer": "yes it is."}}
Adding Services

Services operate the same way as methods, but they can only be invoked from scripts not by client
requests. The purpose of services is to provide services that are commonly needs.

There is an example service ‘services/dbconnect/dbconnect/php’ which implements a database
connection and returns it in the ‘db’ property of the returned object.

Services are invoked like this:
$return_value = call_service(‘dbconnect’, $params);
(You can actually also invoke methods similarly:
$return_method = call_service(’dbconnect’, $params);)

Services are written to the same rules as methods except that they are stored in a sub-directory of the
services directory.

You SHOULD always return your result in the form of an object even if it only has a single property.
This allows for additional parameters to be passed in the future without breaking existing code

JSON-RPC Client for Javascript

The JSON-RPC Client for Javascript is in the file “jsonrpc.js’. Add this file to your web page like
this:
<script src=jsonrpc .js></script>

and use it like this:

//First get the promise:
let p = jsonrpcClient("/pathTo/index.php", "test", {"p1":"one", "p2":"two"});

//specify what happens if the promise is successfully resolved
p.then(function(response) { alert("ALL OK:" + JSON.stringify(response, undefined,4); });

//Specify what happens if the promise fails to deliver
p.catch(function(response) { { alert("OH NO!:" + JSON.stringify(response, undefined,4);});

There is an example file "examples/exampleviaAJAx.html" that lets you send requests and receive
responses. It appears as shown below. Type the RPC code in the box on the left (there is a sample
supplied) and see the result in an alert box after you click the Send! button.

(Note: ‘test’ is an [* JSON-RPC Testerwvia A
example method &« C | @ localhost/test/|SON_RPC/exampleViaA)AX.htm ¢

that just replies . — . - :
with the Apps B = @ fdF0 e PP EG OO0 2 XE@E= A »

parameters you

send to it.) JSON-RPC Tester via Ajax

Note that this is an
asynchronous
request. The
function in .then() | {

This tester fires off a JSON-RPC request to the server using a Javascript Ajax client in the file
'jsonrpc.js’

. "id":1,
will not be "method" :"test",
actioned in line but "params" :{
l t h th Ilplll : Ilonell .
a er’ W en e Ilp2 n : Iltwo 1)

server responds. }

JSON-RPC Client for PHP

The JSON-RPC Client for PHP is in the file ‘jsonrpc.class.php’. Add this file to your web page PHP

script like this:

require_once(‘jsonrpc.class.php’);

and use it like this:

$cli = new jsonrpcClient();

Then, assuming you have already derived values for

$server_url |the fully qualified name of the server e.g.
‘http://localhost/test/JSON RPC/index.php’

$method |e.g. ‘test’

$id a number or a text string that does not start with a number. Note that if you do not
supply an id, the request will be treated as a notification and there will be no
reply.

$params an object that contains the parameters expected by the method

This will retrieve a result from the server:
$result = $cli->request($server_url, $method, $id, $params);

There is an example file ‘examples/exampleviaPHPCURL.php’ that lets you send requests and receive

responses. It appears
supplied) and see the

(Note: ‘test’ is an
example method that
just replies with the
parameters you send
to it.)

This is a round trip
transaction. The
form is sent to the
web server which
carries out the
request on behalf of
the client and then
sends back the page
with the results.

as shown below. Type the RPC code in the box on the left (there is a sample
result in an alert box after you click the Send! button.

[ISOM-RPC tester via Pk

6
oapps B =6 fdFD x PP B O 0O

x

PHP.php

2 AP @ w

C | @ localhost/test/]SON_RPC/exampleVia

.8

JSON-RPC tester via PHP CURL

This tester sends data back to the server which then uses the JSON-RPC PHP CLient to fire off
a request to the server. It inserts the server response in the page that is sent back to the browser.

{
"id":1,
"method":"test",
"params":{
"pl":"one",
"p2": "two"

http://localhost/test/JSON_RPC/index.php

Other methods and services

The following additional methods are supplied in separate submissions:

getdata

getdata — this will execute an SQL command on the database that is connected by the dbconnect
service. It accepts the following parameters:

parameter query string — this is the name of a query in a library of pre-written queries, or, if in
MaintenanceMode, an actual string of SQL code (dangerous, do not allow maintenance mode
recklessly!!!)

parameter querydata object — this object contains a property whose name matches a placeholder in the
(stored) SQL query and whose value is the value to be used to replace that placeholder when the query
is executed.

parameter pageno integer — Used when paging through a request that returns a large number of rows
and you only want a few at a time. (optional - default - show the first page).

parameter pagelength integer - Used when paging through a request that returns a large number of
rows and you only want a few at a time. (optional - default - return all rows).

The result of the query will contain at least two fields in the ‘result’ property of the message returned to
the client. These are:

param rows_affected integer - the number of rows changed or retrieved by the query.

param resultbata object/array — for SELECT, contains an array element for each row. Each element is
an object with one property per column where the name is the column name and the value is the value
for that column in the current row.

In addition, if the query is an INSERT to a row with an auto-increment column,

param last_insert integer - will contain the id of the inserted row.

getmeta

getmeta has exactly the same parameters as getdata, but instead of returning the data from a query it
returns as much data about each column as it can. It uses a variety of techniques to achieve this.

If the query is from a library and that library contains custom metadata for a column, it will return that.

If the query is an SQL statement or there is no custom metadata, it will query the database using
various techniques to get as much information as possible.

Two properties are returned

parameter resultfields object - contains properties where the name is a column name and the value is
an object containing all of the metadata properties for that field.

parameter requestfields object - contains properties where the name is a placeholder name and the
value is an object containing all of the metadata properties for that placeholder (provided the
placeholder name is also a valid column name.). These are the values you would have to supply if
making a getdata request.

NOTE: It is not unusual to batch getdata with a getmetadata request. This saves a server round trip
(HTTP is baggage heavy) and a connection to the database server in the JSON-RPC server.

listsql

listsql returns a list of all the query definitions in the library. It takes no parameters. The result is an
array of objects with one library query per array element. The objects contain just one property

queryName whose value is the name of a query.

	Introduction
	Set up
	JSON-RPC Server for PHP
	Methods and how to add them
	How the server locates method definitions
	How to write a method/function
	Adding Services

	JSON-RPC Client for Javascript
	JSON-RPC Client for PHP
	Other methods and services
	getdata
	getmeta
	listsql

